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Purpose

• Gate stack process impact on gate leakage, SILC and
PBTI is analyzed. 

• IL and HK thickness and energy-barrier offsets’ impact on 
gate leakage and SILC is quantified.

 
• Reaction-Diffusion-Drift (RDD) framework is used to 

simulate time kinetics of bulk traps for SILC, and IL/HK 
interface traps for PBTI.
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Introduction: Gate Leakage

• Equivalent Oxide Thickness (EOT) scaling of High-K Metal 
Gate (HKMG) gate insulator is desirable. 

• The primary impediment is gate leakage (IG0) due to direct 
tunneling via the interlayer (IL) and High-K (HK).

• Due to less sensitivity to leakage, IL scaling is the 
preferred route to EOT scaling. 

• However, the tunneling barriers between the Si/IL and 
IL/HK can also change for ultra-thin layers.
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Introduction: Stress Induced Leakage Current 
(SILC)

• SILC related increase in gate leakage for HKMG NMOS 
gets exacerbated with EOT scaling.

• SILC is due to Trap Assisted Tunneling (TAT) via traps 
generated in the IL and HK.

• The exact location of generated traps for maximum SILC 
response is debated. 

• The time kinetics of SILC shows power law time 
dependence with n ∼ 1/3 for HKMG stacks. 
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Introduction: Positive Bias Temperature 
Instability (PBTI)

• PBTI in NMOS and NBTI in PMOS related increase in 
threshold voltage shift (∆VT) gets worse with EOT scaling. 

• PBTI is due to trap generation at the IL/HK interface 
(∆NIT−HK) and inside the HK bulk (∆NOT−HK) and electron 
trapping in the HK bulk (negligible).

• The ∆NIT−HK dominates overall ∆VT for PBTI stress. 

• Measured time kinetics of ∆NIT−HK show power law time 
dependence with n ∼ 1/6 time slope.
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Device Details

● Measurements are done on Gate First HKMG NMOSFET devices

● Chem-Ox IL devices were processed by using RT wet chemistry 
followed by standard 8 hour air-break prior to ALD HfOx deposition. 

● Low T RTP is used for the formation of ultra-thin IL down to 3 Å.

● Post HK nitridation (PHKN) has been done using Decoupled Plasma 
Nitridation (DPN) followed by Post Nitridation Anneal (PNA). 

● SILC during PBTI stress in measure-stress-measure (MSM) mode. 
PBTI trap generation at the IL/HK interface is studied using Direct 
Current IV (DCIV) method in MSM mode.
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Device Details
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Device Pre-IL IL Pre-HK HK Nitridation SILC DCIV

D1 Type-A Chem-Ox 6.5Å Type-I 18Å No ✓

D2 Type-A Chem-Ox 6.5Å Type-I 23Å Yes ✓

D3 Type-A RTP-5Å Type-IV 23Å No ✓ ✓

D4 Type-B RTP-3Å Type-IV 23Å No ✓ ✓

D5 Type-B RTP-3Å Type-III 23Å No ✓ ✓

D6 Type-C RTP-3Å Type-II 18Å No ✓

D7 Type-C RTP-3Å Type-II 23Å No ✓

D8 Type-C RTP-3Å Type-IV 23Å Yes ✓



Gate Leakage Framework

WKB tunneling probabilities via IL (T1) 
and HK (T2) and supply function in 
cathode govern gate leakage (IG0)
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IG0 ∝ ∫ Sn(fc−fa)T dE

Typical rate of IG0 increase for 
scaling IL (10X/2Å) and HK 
(10X/1Å EOT) becomes different 
when φBIL and φBHK changes are 
also considered.



Gate Leakage Framework

• The measured and 
modeled gate 
leakage across 
devices is shown. 

• The same energy 
barriers are used to 
model SILC.
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SILC Framework
• SILC is due to TAT via traps generated at 

IL and HK bulk during PBTI/TDDB stress.

• Based on trap location (in IL or HK), the 
probabilities T1, T2 and T3 are calculated.

• Energy relaxation in the IL is taken as 1 
eV.
               
ΔIG = ∫∫ c ΔNOT(x,t)                              dx dE

c = qσnvthNCSn(fc-fa)
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Tc,t(E)Tt,a(E-Erelax)
Tc,t(E)+Tt,a(E-Erelax)



Peak SILC Response

The maximum response point and the 
contours move from HK to IL as the ratio 
IL thickness/HK thickness is increased.
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Peak SILC Response
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• The maximum response 
point moves deeper into 
HK for lower IL 
thickness. 

• The maximum response 
point moves towards 
IL/HK interface for lower 
HK thickness, more so 
for higher φBHK.



SILC Modeling of HKMG Stacks
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• HK bulk trap density 
values (∆NOT−HK) decrease 
as the HK relaxation 
energy is decreased.

• SILC is dependent mainly 
on ∆NOT−HK and 
insensitive to changes in 
bulk trap density in IL 
(∆NOT−IL), across different 
EOX.



SILC Modeling of HKMG Stacks: Time Kinetics

Measured and 
delay-corrected data 
and modeled SILC time 
kinetics and modeling 
for (a) D6, (b) D2, (c) D1.  
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Device IL (in Å) HK (in Å)

(a) D6 3 18

(b) D2 6.5 23

(c) D1 6.5 18



RDD Model for Bulk Trap Time Kinetics
• RDD Chemical Equations:

• Release of H, H induced bond dissociation 
and eventual diffusion and drift of molecular 
(H2) and ionic (OH−) species control ∆NOT time 
kinetics.

• Simulated stress time kinetics of ∆NOT for 
different kF3 shows the slope variation.
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RDD Model for Bulk Trap Time Kinetics

17

Parameters Value Used
kF20 5.75×103 cm3/s
kR10 5×104 cm3/s
kR20 7.5×10-4 cm3/s
kR30 7.5×10-4 cm3/s
α 0.5 qÅ
EAkF1 0.3 eV
EAkF2 0.235 eV
EAkF3 0.235 eV
EAkR1 0.12 eV
EAkR2 0.2 eV
EAkR3 0.2 eV

∆NOT−HK (trap generation rate ratio IL:HK= 
1:300) time kinetics and RDD modeling for 
(a)-(b) D6, (c)-(d) D2, (e)-(f) D1.



Bulk Trap Generation: Process Impact

∆NOT−HK reduces as 
IL thickness is 
reduced, increases 
with PHKN and 
increases with 
higher moisture 
content (controlled 
by pre-HK IFT).
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RD Model for PBTI generated Trap Time Kinetics

∆NIT−HK time kinetics is modeled 
using pure (H2) diffusion. 

Modeling of ∆NIT−HK time kinetics at 
different VG and across all devices 
is done using only 2 adjustable 
model parameters, kF10 and Γ0.
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EAkF1 (RD) 0.2 eV



PBTI generated Traps: Process Impact

• EOX dependence of ∆NIT−HK and modeling for variation in (a) IL 
thickness, (b) PHKN, and (c) Pre-HK IFT is shown. 

• With IL reduction ∆NIT−HK increases, with PHKN it reduces 
and with IFT, it increases with higher moisture content.
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Conclusions
• The composition and quality of the IL and HK integration processes 

impact leakage and reliability of ultra-thin HKMG stacks. 

• Changes in energy barrier offsets should be considered for proper 
estimation of leakage increase at reduced IL and HK thickness. 

• The dominating contribution to SILC is due to ∆NOT−HK changes. 

• The generic RDD framework (RD being a subset) is able to model the 
time kinetics of ∆NOT−HK (∆NOT−IL) and ∆NIT−HK and explain their 
power-law time slope at long time.
 

• The process dependence of ∆NOT−HK and ∆NIT−HK is modeled. 
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Thank You!
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