Magnon spin transport driven by the spin chemical potential in Permalloy

Hanfeng Wang Zhongqiang Hu Dimple Kochar

EECS EECS EECS EECS

Introduction & Motivation

- Spintronics: spin degrees of freedom of electrons
- Precise addressing, low energy consumption, and non-volatility \bullet
- Magnons: quantum excitation of spin waves \bullet

The exploration of spin transport properties is of great importance!

- Injector: converting \mathbf{j}_c to \mathbf{j}_s
- Permalloy: spin current transport
- Detector: converting \mathbf{j}_s to \mathbf{j}_c \bullet

$$
\frac{2e}{\hbar} \mathbf{j}_s = -\frac{\nabla \mu_s}{\rho_e} \qquad \nabla^2 \mu_s = \frac{\mu_s}{\ell_{sf}^2} - \tau_{sf} \frac{\partial}{\partial t} \nabla^2 \mu_s
$$

[1] Nat. Phys. 11, 453-461 (2015)

Model Formulation

Discretization (μ_i denotes the potential at the *i*th node): \bullet

$$
C\left(\frac{d\mu_{\text{inj}}}{dt} - \frac{d\mu_{1}}{dt}\right) - C\left(\frac{d\mu_{1}}{dt} - \frac{d\mu_{2}}{dt}\right) = \frac{\mu_{1} - \mu_{2}}{R_{1}} - \frac{\mu_{\text{inj}} - \mu_{1}}{R_{1}} + \frac{\mu_{1}}{R_{2}} \qquad \text{for } i = 1
$$

$$
C\left(\frac{d\mu_{i-1}}{dt} - \frac{d\mu_{i}}{dt}\right) - C\left(\frac{d\mu_{i}}{dt} - \frac{d\mu_{i+1}}{dt}\right) = \frac{\mu_{i} - \mu_{i+1}}{R_{1}} - \frac{\mu_{i-1} - \mu_{i}}{R_{1}} + \frac{\mu_{i}}{R_{2}} \qquad \text{for } i \in \{2, 3, ..., N - 1\}
$$

$$
C\left(\frac{d\mu_{N-1}}{dt} - \frac{d\mu_{N}}{dt}\right) = -\frac{\mu_{N-1} - \mu_{N}}{R_{1}} + \frac{\mu_{N}}{R_{2}} \qquad \text{for } i = N
$$

 R_2

 $(\mu_{\rm inj})$

 R_2

$$
R_1 = \frac{4e\rho_e \Delta L}{\hbar}, \qquad R_2 = \frac{4e\rho_e \ell_{\rm sf}^2}{\hbar \Delta L}, \qquad C = \frac{\hbar \tau_{\rm sf}}{4e\rho_e \Delta L}
$$

 R_2

 R_2

 R_2

Methodology

Linear system: $f(x(t), u(t)) = Ax(t) + Bu(t)$

Simple Finite Difference Trapezoidal Time Integration Method is used: $\frac{dx}{dt} = f(x(t), u(t))$ $x_j - x_{j-1} = \frac{\Delta t}{2} (f(x_j, u) + f(x_{j-1}, u))$

• Fixed time step: $(I - \frac{\Delta t}{2} A)x_j = x_{j-1} + \frac{\Delta t}{2} (Ax_{j-1} + 2bu)$

 \rightarrow *JX* = F with fixed *J* \rightarrow LU decompose J, and use elimination at each time step

Logarithmic time step: $(I - \frac{\Delta t_j}{2} A)x_j = x_{j-1} + \frac{\Delta t_j}{2} (Ax_{j-1} + 2bu)$

 \rightarrow solve using MATLAB's \ at every time step.

Demo of dynamical simulation in 2D case

Verification using an online circuit simulator

 $μ_{inj} = 8.7 \text{ }\mu\text{V}, 400 \text{ nodes}$ *μ_{inj}* = 8.7 mV, 25 nodes

[\[https://www.circuitlab.com/editor/#?id=4vt65z22tge9\]](https://www.circuitlab.com/editor/#?id=4vt65z22tge9)

Model Order Reduction

MITEECS

1D

Size = 900

Choose q=40 for 5% tolerence. Time 0.4%. Memory 1.0%

Preconditioner

distribution of non-zero elements in A matrix

Model Order Reduction

Size = 900 Choose q=40 for 5% tolerence. Time 0.4%. Memory 1.0%

Size = 3600 Time $\sim 90\%$. Memory $\sim 3\%$ (Maybe an another way is better)

1D Steady State and Parameter Analysis

- State vector $x = [\mu_1, \mu_2, ..., \mu_N]$, input $u = [\mu_{\text{ini}}]$, quantity of interest $y = \mu_{\text{det}} = \mu_N$ \bullet
- The potential decays from the injector (μ_0) to the detector (μ_N) \bullet
- "Bad" solution: (1) decays too quickly, $\mu_{\text{det}} \approx 0$; (2) decays too slowly, $\mu_{\text{det}} \approx \mu_{\text{ini}}$
- 1st type bad solution, $\Delta \mu = \mu_{\text{det}} \mu_{\text{inj}}$ will have little change when parameters are perturbed in a \bullet small percentage (e.g., \sim 10%). This happens when $\ell_{sf} \ll L$:

1D Steady State and Parameter Analysis

2nd type bad solution: μ_{ave} has little change. This happens when $\ell_{sf} \gg L$: \bullet

Only when $\ell_{sf} \sim L$, μ_{ave} and $\Delta \mu$ are both sensitive, and we get rid of both the "bad" solutions: \bullet

