<u>Magnon spin transport driven by the spin</u> <u>chemical potential in Permalloy</u>

Hanfeng Wang EECS

Zhongqiang Hu EECS Dimple Kochar EECS

Introduction & Motivation

- Spintronics: spin degrees of freedom of electrons
- Precise addressing, low energy consumption, and non-volatility
- Magnons: quantum excitation of spin waves

The exploration of spin transport properties is of great importance!

- Injector: converting \boldsymbol{j}_{c} to \boldsymbol{j}_{s}
- Permalloy: spin current transport
- Detector: converting \mathbf{j}_{s} to \mathbf{j}_{c}

$$\frac{2e}{\hbar}\boldsymbol{j}_{\mathrm{s}} = -\frac{\nabla\mu_{\mathrm{s}}}{\rho_{\mathrm{e}}} \qquad \nabla^{2}\mu_{\mathrm{s}} = \frac{\mu_{\mathrm{s}}}{\ell_{\mathrm{sf}}^{2}} - \tau_{\mathrm{sf}}\frac{\partial}{\partial t}\nabla^{2}\mu_{\mathrm{s}}$$

[1] Nat. Phys. 11, 453–461 (2015)

Model Formulation

• Discretization (μ_i denotes the potential at the *i*th node):

$$C\left(\frac{d\mu_{\text{inj}}}{dt} - \frac{d\mu_{1}}{dt}\right) - C\left(\frac{d\mu_{1}}{dt} - \frac{d\mu_{2}}{dt}\right) = \frac{\mu_{1} - \mu_{2}}{R_{1}} - \frac{\mu_{\text{inj}} - \mu_{1}}{R_{1}} + \frac{\mu_{1}}{R_{2}} \qquad \text{for } i = 1$$

$$C\left(\frac{d\mu_{i-1}}{dt} - \frac{d\mu_{i}}{dt}\right) - C\left(\frac{d\mu_{i}}{dt} - \frac{d\mu_{i+1}}{dt}\right) = \frac{\mu_{i} - \mu_{i+1}}{R_{1}} - \frac{\mu_{i-1} - \mu_{i}}{R_{1}} + \frac{\mu_{i}}{R_{2}} \qquad \text{for } i \in \{2, 3, \dots, N-1\}$$

$$C\left(\frac{d\mu_{N-1}}{dt} - \frac{d\mu_{N}}{dt}\right) = -\frac{\mu_{N-1} - \mu_{N}}{R_{1}} + \frac{\mu_{N}}{R_{2}} \qquad \text{for } i = N$$
Note $C\left(\frac{R_{1}}{R_{1}} - \frac{R_{1}}{R_{1}}\right) = \frac{R_{1}}{R_{1}} - \frac{R_{2}}{R_{1}} \qquad \text{for } i = N$

• R_1 : spin transport; R_2 : spin leakage; C: spin accumulation

$$R_{1} = \frac{4e\rho_{e}\Delta L}{\hbar}, \qquad R_{2} = \frac{4e\rho_{e}\ell_{sf}^{2}}{\hbar\Delta L}, \qquad C = \frac{\hbar\tau_{sf}}{4e\rho_{e}\Delta L}$$

Methodology

Linear system: f(x(t), u(t)) = Ax(t) + Bu(t)

Simple Finite Difference Trapezoidal Time Integration Method is used: $\frac{dx}{dt} = f(x(t), u(t))$

$$x_j - x_{j-1} = \frac{\Delta \iota}{2} (f(x_j, u) + f(x_{j-1}, u))$$

• Fixed time step: $(I - \frac{\Delta t}{2}A)x_j = x_{j-1} + \frac{\Delta t}{2}(Ax_{j-1} + 2bu)$

 $\rightarrow JX = F$ with fixed $J \rightarrow LU$ decompose J, and use elimination at each time step

• Logarithmic time step: $(I - \frac{\Delta t_j}{2}A)x_j = x_{j-1} + \frac{\Delta t_j}{2}(Ax_{j-1} + 2bu)$

 \rightarrow solve using MATLAB's \ at every time step.

Demo of dynamical simulation in 2D case

	R40 283.2 mΩ	R1 1,406 Q	R97 283.2 mΩ	R20 1.406 Ω	R98 283.2 mΩ	R24 1,406 Ω		R26	R100 283.2 mΩ
		C1 71.33 fF		C10 71.33 fF		C12 71.33 fF		C13 71.33 fF	
R47 1.406 Ω	C26 71.33 fF	R42 1.406 Ω	C21 71.33 f	R43 F 1.406 Ω	C22 71,33	R44 R44 IF 1.406 Ω	C23 71.33	R45 <	C24 71.33 fF
	-				+ -				
	•	R61 1.406 Ω		R62 1.406 Ω C37	+	R63 1.406 Ω		R64 1.406 Ω	
	R105 283.2 mΩ	C36 71.33 fF	R104 283.2 mΩ	71.33 fF	R103 283.2 mΩ	C38 71.33 fF	R102 283.2 mΩ	C39 71.33 fF	R101
R69 1.406 Ω	C44 71.33 fF	R65	C40 71.33 f	R66 F 1.406 Ω	C41 71.33	R67 -	C42 71.33	F 1.406 Ω <	C43 71.33 fF
					+				
	+	R70 1.406 Ω	+ +	R71 1.406 Ω		R72 1.406 Ω		R73 1.406 Ω	
	R110 283.12 mΩ	C45 71.33 fF	R109 283,2 mΩ	C46 71.33 fF	R108 283.2 mΩ	C47 71.33 fF	R107 283.2 mΩ	C48 71.33 fF	R106 283,2 mΩ
R78 1.406 Ω	C53 71.33 fF	R74 1.406 Ω	C49 71.33 1	R75 F 1.406 Ω	C50 71.33	R76 -	C51 71.33	R77 <	C52 71.33 fF
					+				
	•	R79 1.406 Ω		R80 1.406 Ω		R81 1.406 Ω	-	R82 1.406 Ω	-
	R115 283.2 mΩ	C54 71.33 fF	R114 283.2 mΩ	C55 71.33 fF	R113 283.2 mΩ	C56 71.33 fF	R112 283.2 mΩ	C57 71.33 fF	R111 283.2 mΩ
R87	C62 71.33 fF	R83 1.406 Ω	C58 71.33 f	R84 F 1.406 Ω	C59 71,33	R85 -	C60 71.33	F 1.406 Ω <	C61 71.33 fF
									•
-(+))	R88 1.406 Ω	~	R89 1.406 Ω		R90 • 1.406 Ω		R91 • 1.406 Ω	
V1 8.7 mV	R120 283.2 mΩ	C63 71.33 fF	₹ R119 283.2 mΩ	C64 71.33 fF	R118 283.2 mΩ	C65 71.33 fF	R117 283.2 mΩ	C66 71.33 fF	R116 283.2 mΩ
				[h	ttps://ww	w.circuitla	ab.com/edi	tor/#?id=	4vt65z22tg

Verification using an online circuit simulator

 μ_{inj} = 8.7 µV, 400 nodes

 μ_{inj} = 8.7 mV, 25 nodes

[https://www.circuitlab.com/editor/#?id=4vt65z22tge9]

Model Order Reduction

MITEECS

Size = 900

Choose q=40 for 5% tolerence. Time 0.4%. Memory 1.0%

1D

Preconditioner

distribution of non-zero elements in A matrix

Model Order Reduction

Size = 900 Choose q=40 for 5% tolerence. Time 0.4%. Memory 1.0%

Size = 3600 Time ~90%. Memory ~3% (Maybe an another way is better)

1D Steady State and Parameter Analysis

- State vector $x = [\mu_1, \mu_2, ..., \mu_N]$, input $u = [\mu_{inj}]$, quantity of interest $y = \mu_{det} = \mu_N$
- The potential decays from the injector (μ_0) to the detector (μ_N)
- "Bad" solution: (1) decays too quickly, $\mu_{det} \approx 0$; (2) decays too slowly, $\mu_{det} \approx \mu_{inj}$
- 1st type bad solution, $\Delta \mu = \mu_{det} \mu_{inj}$ will have little change when parameters are perturbed in a small percentage (e.g., ~ 10%). This happens when $\ell_{sf} \ll L$:

1D Steady State and Parameter Analysis

• 2nd type bad solution: μ_{ave} has little change. This happens when $\ell_{sf} \gg L$:

• Only when $\ell_{sf} \sim L$, μ_{ave} and $\Delta \mu$ are both sensitive, and we get rid of both the "bad" solutions:

