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1 Student Details

Name : Dimple Kochar
Roll Number : 16D070010
Filter Number : 79

2 Filter-1(Bandpass) Details

2.1 Un-normalized Discrete Time Filter Specifications

Filter Number = 79
Since filter number is >75 , m = 79 - 75 = 4 and passband will be equiripple
q(m) = greatest integer strictly less than 0.1*m = greatest integer strictly less than 0.4 = 0
r(m) = m - 10*q(m) = 4 - 10*0 = 4
BL(m) = 5 + 1.4*q(m) + 4*r(m) = 5 + 1.4*0 + 4*4 = 21
BH(m) = BL(m) + 10 = 21 + 10 = 31

We have to design a Band-Pass filter with passband from BL(m) kHz to BH(m) kHz. There-
fore the specifications are as follows:

• Passband : 21 kHz to 31 kHz

• Transition Band : 2 kHz on either side of passband

• Stopband : 0-19 kHz and 33-160 kHz (∵ Sampling rate is 320 kHz)

• Tolerance : 0.15 in magnitude for both Passband and Stopband

• Passband Nature : Equiripple

• Stopband Nature : Monotonic

2.2 Normalized Digital Filter Specifications

Sampling Rate = 320 kHz
Any frequency(Ω) upto 160 kHz(SamplingRate

2
) can be represented on the normalized axis(ω) as (since

in the normalized frequency axis, sampling rate corresponds to 2π) :

ω =
Ω ∗ 2π

Ωs(SamplingRate)
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Therefore the corresponding normalized discrete filter specifications are:

• Passband : 0.13125π to 0.19375π

• Transition Band : 0.0125π on either side of passband

• Stopband : 0-0.11875π and 0.20625π-π

• Tolerance : 0.15 in magnitude for both Passband and Stopband

• Passband Nature : Equiripple

• Stopband Nature : Monotonic

2.3 Analog filter specifications for Band-pass analog filter using Bilinear
Transformation

The bilinear transformation is given as:

Ω = tan
(ω

2

)
Applying the Bilinear transform to the frequencies at the band-edges, we get:

ω Ω
0 0
0.11875π 0.1887
0.13125π 0.2091
0.19375π 0.3141
0.20625π 0.3358
π ∞

Therefore, the corresponding analog filter specifications using the bilinear transformation are:

• Passband : 0.2091(ΩP1) to 0.3141(ΩP2)

• Transition Band : 0.1887 to 0.2091 & 0.3141 to 0.3358

• Stopband : 0 to 0.1887(ΩS1) and 0.3358(ΩS2) to ∞

• Tolerance : 0.15 in magnitude for both Passband and Stopband

• Passband Nature : Equiripple

• Stopband Nature : Monotonic
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2.4 Frequency Transformation & Relevant Parameters

We make use of the Bandpass transformation to transform the Band-Pass analog filter to a Lowpass
analog filter. We require two parameters in such a case:

ΩL =
Ω2 − Ω2

0

BΩ

The two parameters in the above equation are B and Ω0. They can be determined using the specifi-
cations of the bandpass analog filter using the following relations:

Ω0 =
√

ΩP1ΩP2 =
√

0.2091 ∗ 0.3141 = 0.2563

B = ΩP2 − ΩP1 = 0.3141− 0.2091 = 0.1050

Ω ΩL

0+ -∞
0.1887(ΩS1) -1.5181(ΩLS1

)

0.2091(ΩP1) -1(ΩLP1
)

0.2563(Ω0) 0
0.3141(ΩP2) 1(ΩLP2

)

0.3358(ΩS2) 1.3356(ΩLS2
)

∞ ∞

2.5 Frequency Transformed Lowpass Analog Filter Specifications

• Passband Edge : 1 (ΩLP
)

• Stopband Edge : min(-ΩLS1
,ΩLS2

) = min(1.5181, 1.3356) = 1.3356 (ΩLS
)

• Tolerance : 0.15 in magnitude for both Passband and Stopband

• Passband Nature : Equiripple

• Stopband Nature : Monotonic

2.6 Analog Lowpass Transfer Function

We need an Analog Filter which has an equiripple passband and a monotonic stopband. Therefore, we
design using the Chebyshev approximation. Since the tolerance(δ) in both passband and stopband
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is 0.15, we define two new quantities in the following way:

D1 =
1

(1− δ)2
− 1 =

1

0.852
− 1 = 0.3841

D2 =
1

δ2
− 1 =

1

0.152
− 1 = 43.44

Now choosing the parameter ε of the Chebyshev filter to be
√
D1, we get the min value of N as:

Nmin = d
cosh−1(

√
D2

D1
)

cosh−1(
ΩLS

ΩLP

)
e

Nmin = d3.493e = 4

Now, the poles of the transfer function can be obtained by solving the equation:

1 +D1cosh
2(Nmincosh

−1(
s

j
)) = 1 + 0.3841cosh2(4cosh−1(

s

j
)) = 0

Solving for the roots (using MATLAB) we get:
Note that the above figure shows the poles of the Magnitude Plot of the Transfer Function. In order
to get a stable Analog LPF, we must include the poles lying in the Left Half Plane in the Transfer
Function(The poles are symmetric about origin and we can pick one from each pair to be a part of
our Transfer Function).

p1 = −0.12216− 0.96981ι

p2 = −0.12216 + 0.96981ι

p3 = −0.29493 + 0.40171ι

p4 = −0.29493− 0.40171ι

Using the above poles which are in the left half plane and the fact that N is even we can write the
Analog Lowpass Transfer Function as:

Hanalog,LPF (sL) =
(−1)4p1p2p3p4√

(1 +D1)(sL − p1)(sL − p2)(sL − p3)(sL − p4)

Hanalog,LPF (sL) =
0.2017

(s2
L + 0.24432sL + 0.95545)(s2

L + 0.58984sL + 0.24835)
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Figure 1: Poles of Magnitude Plot of Analog LPF

2.7 Analog Bandpass Transfer Function

The transformation equation is given by:

sL =
s2 + Ω2

0

Bs

Substituting the values of the parameters B(0.1050) and Ω0(0.2563), we get:

sL =
s2 + 0.0657

0.1050s

Substituting this value into Hanalog,LPF (sL) we get Hanalog,BPF (s) as:

0.2448 ∗ 10−4 ∗ s4

(s8 + 0.0876s7 + 0.2776s6 + 0.0180s5 + 0.0279s4 + 0.0012s3 + 0.0012s2 + 2.482 ∗ 10−5s1 + 1.862 ∗ 10−5)
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2.8 Discrete Time Filter Transfer Function

To transform the analog domain transfer function into the discrete domain, we need to make use of
the Bilinear Transformation which is given as:

s =
1− z−1

1 + z−1

Using above equation we get Hdiscrete,BPF (z) from Hanalog,BPF (s) as:

10−3 ∗ (0.0173− 0.0693z−2 + 0.1039z−4 − 0.0693z−6 + 0.0173z−8)

1− 6.8374z−1 + 21.3607z−2 − 39.6324z−3 + 47.6713z−4 − 38.0410z−5 + 19.6800z−6 − 6.0468z−7 + 0.8490z−8

Figure 2: Plotting frequency and phase response of filter using freqz command of MATLAB
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2.9 Realization using Direct Form II

Figure 3: Direct Form II Block Diagram for Hdiscrete,BPF (z)
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The negative of the denominator coefficients appear as gains on the side of the input sequence x[n]
while the numerator coefficients appear on the side of the output y[n] as gains in the signal-flow
graph representation of the Direct Form II.

2.10 FIR Filter Transfer Function using Kaiser Window

The tolerance in both the stopband and passband is given to be 0.15.
Therefore δ = 0.15 and we get the minimum stopband attenuation to be:

A = −20 log(0.15) = 16.4782dB

Since A < 21, we get β to be 0 where β is the shape parameter of Kaiser window.
Now to estimate the window length required, the lower bound on the window length is found using
the empirical formula.

N ≥ A− 7.95

2.285 ∗∆ωT

Here ∆ωT is the minimum transition width, which is same on both sides of the passband.

∆ωT =
2kHz ∗ 2π

320kHz
= 0.0125π

∴ N ≥ 95

The above equation gives a loose bound on the window length when the tolerance is not very strin-
gent. On successive trials in MATLAB, it was found that a window length of 131 is required to
satisfy the required constraints.

The time domain coefficients were obtained by first generating the ideal impulse response samples
for the same length as that of the window. The Kaiser Window was generated using the MATLAB
function and applied on the ideal impulse response samples. The band-pass impulse response samples
were generated as the difference between two low-pass filters as done in class.

9
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Figure 4: Time domain sequence values

The z-transform can simply be read off from the sequence values since its finite sequence.
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Figure 5: Plotting frequency and phase response of filter using freqz command of MATLAB

3 Filter-2(Bandstop) Details

3.1 Un-normalized Discrete Time Filter Specifications

Filter Number = 79
Since filter number is >75 , m = 79 - 75 = 4 and passband will be monotonic
q(m) = greatest integer strictly less than 0.1*m = greatest integer strictly less than 0.4 = 0
r(m) = m - 10*q(m) = 4 - 10*0 = 4
BL(m) = 5 + 1.2*q(m) + 2.5*r(m) = 5 + 1.2*0 + 2.5*4 = 15
BH(m) = BL(m) + 6 = 15 + 6 = 21

The second filter is given to be a Band-Stop filter with stopband from BL(m) kHz to BH(m)
kHz. Therefore the specifications are:

• Stopband : 15 kHz to 21 kHz

• Transition Band : 2 kHz on either side of stopband

• Passband : 0-13 kHz and 23-125 kHz (∵ Sampling rate is 250 kHz)

11
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• Tolerance : 0.15 in magnitude for both Passband and Stopband

• Passband Nature : Monotonic

• Stopband Nature : Monotonic

3.2 Normalized Digital Filter Specifications

Sampling Rate = 250 kHz
In the normalized frequency axis, sampling rate corresponds to 2π
Thus, any frequency(Ω) upto 125 kHz(SamplingRate

2
) can be represented on the normalized axis(ω) as:

ω =
Ω ∗ 2π

Ωs(SamplingRate)

Therefore the corresponding normalized discrete filter specifications are:

• Stopband : 0.12π to 0.168π

• Transition Band : 0.016π on either side of stopband

• Passband : 0-0.104π and 0.184π-π

• Tolerance : 0.15 in magnitude for both Passband and Stopband

• Passband Nature : Monotonic

• Stopband Nature : Monotonic

3.3 Analog filter specifications for Band-stop analog filter using Bilinear
Transformation

The bilinear transformation is given as:

Ω = tan
(ω

2

)
Applying the Bilinear transform to the frequencies at the band-edges, we get:

Therefore the corresponding analog filter specifications for the same type of analog filter using the
bilinear transformation are:

• Stopband : 0.1908(ΩS1) to 0.2702(ΩS2)

• Transition Band : 0.1684 to 0.1908 & 0.2702 to 0.2794

• Passband : 0 to 0.1684(ΩP1) and 0.2974(ΩP2) to ∞

• Tolerance : 0.15 in magnitude for both Passband and Stopband

12
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ω Ω
0 0
0.104π 0.1648
0.12π 0.1908
0.168π 0.2702
0.184π 0.2974
π ∞

• Passband Nature : Monotonic

• Stopband Nature : Monotonic

3.4 Frequency Transformation & Relevant Parameters

We need to transform a Band-Stop analog filter to a Lowpass analog filter. We require two parame-
ters and can use the bandstop transformation.

ΩL =
BΩ

Ω2
0 − Ω2

The two parameters in the above equation are B and Ω0. They can be determined using the specifi-
cations of the bandpass analog filter using the following relations:

Ω0 =
√

ΩP1ΩP2 =
√

0.1648 ∗ 0.2974 = 0.2214

B = ΩP2 − ΩP1 = 0.2974− 0.1648 = 0.1325

Ω ΩL

0+ 0+

0.1648(ΩP1) +1(ΩLP1
)

0.1908(ΩS1) +2.0026(ΩLS1
)

0.2214(Ω−
0 ) ∞

0.2214(Ω+
0 ) -∞

0.2702(ΩS2) -1.4924(ΩLS2
)

0.2794(ΩP2) -1(ΩLP2
)

∞ 0−

3.5 Frequency Transformed Lowpass Analog Filter Specifications

• Passband Edge : 1 (ΩLP
)

• Stopband Edge : min(ΩLS1
,-ΩLS2

) = min(2.0026, 1.4924) = 1.4924 (ΩLS
)

13
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• Tolerance : 0.15 in magnitude for both Passband and Stopband

• Passband Nature : Monotonic

• Stopband Nature : Monotonic

3.6 Analog Lowpass Transfer Function

We need an Analog Filter which has a monotonic passband and a monotonic stopband. Therefore we
need to design using the Butterworth approximation. Since the tolerance(δ) in both passband and
stopband is 0.15, we define two new quantities in the following way:

D1 =
1

(1− δ)2
− 1 =

1

0.852
− 1 = 0.3841

D2 =
1

δ2
− 1 =

1

0.152
− 1 = 43.44

Now using the inequality on the order N of the filter for the Butterworth Approximation we get:

Nmin = d
log
√

D2

D1

log ΩS

ΩP

e

Nmin = d5.9046e = 6

The cut-off frequency(Ωc) of the Analog LPF should satisfy the following constraint:

ΩP

D
1

2N
1

≤ Ωc ≤
ΩS

D
1

2N
2

1.083 ≤ Ωc ≤ 1.0899

Thus we can choose the value of Ωc to be 1.085
Now, the poles of the transfer function can be obtained by solving the equation:

1 +

(
s

jΩc

)2N

= 1 +

(
s

j1.085

)12

= 0

Solving for the roots (using MATLAB) we get: Note that the above figure shows the poles of the
Magnitude Plot of the Transfer Function. In order to get a stable Analog LPF, we must include the
poles lying in the Left Half Plane in the Transfer Function(The poles are symmetric about origin and
we can pick one from each pair to be a part of our Transfer Function).

p1 = −0.2808− 1.0480ι

p2 = −0.7672− 0.7672ι

14



EE 338 : Filter Design Assignment Dimple Kochar

Figure 6: Poles of Magnitude Plot of Analog LPF

p3 = −1.0480− 0.2808ι

p4 = −1.0480 + 0.2808ι

p5 = −0.7672 + 0.7672ι

p6 = −0.2808 + 1.0480ι
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Using the above poles which are in the left half plane we can write the Analog Lowpass Transfer
Function as:

Hanalog,LPF (sL) =
(Ωc)

N

(sL − p1)(sL − p2)(sL − p3)(sL − p4)(sL − p5)(sL − p6)

=
1.6315

(s2
L + 0.5616sL + 1.1772)(s2

L + 1.5344sL + 1.1772)(s2
L + 2.0961sL + 1.1772)

3.7 Analog Bandstop Transfer Function

The transformation equation is given by:

sL =
Bs

Ω2
0 + s2

Substituting the values of the parameters B(0.1325) and Ω0(0.2214), we get:

sL =
0.1325s

0.0490 + s2

Substituting this value into Hanalog,LPF (sL) we get Hanalog,BSF (s). It can be written in the form
N(s)/D(s) where the coefficients of the polynomials N(s) and D(s) are given as:

Degree s12 s11 s10 s9

Coefficient 1(a12) 0.4719(a11) 0.4054(a10) 0.1323(a9)

Degree s8 s7 s6 s5

Coefficient 0.0595(a8) 0.01389(a7) 0.004126(a6) 0.00068(a5)

Degree s4 s3 s2 s1 s0

Coefficient 0.000143(a4) 1.558*10−5(a3) 2.34*10−6(a2) 1.3348*10−7(a1) 1.386*10−8(a0)

Table 1: Coefficients of D(s)

16
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Degree s12 s10 s8 s6

Coefficient 1(b12) 0.2941(b10) 0.0360 (b8) 0.024(b6)

Degree s4 s2 s0

Coefficient 8.656*10−5(b4) 1.697*10−6(b2) 1.3863*10−8(b0)

Table 2: Coefficients of N(s)

The coefficients of odd powers of s in N(s) are all 0.

3.8 Discrete Time Filter Transfer Function

To transform the analog domain transfer function into the discrete domain, we need to make use of
the Bilinear Transformation which is given as:

s =
1− z−1

1 + z−1

Using above equation we get Hdiscrete,BSF (z) from Hanalog,BSF (s).It can be written in the form
N(z)/D(z) where the coefficients of the polynomials N(z) and D(z) are given as:

Degree z−12 z−11 z−10 z−9

Coefficient 0.64 (b−12) -6.94(b−11) 35.3(b−10) -110.79(b−9)

Degree z−8 z−7 z−6 z−5

Coefficient 238.9 (b−8) -372.68(b−7) 431.15(b−6) -372.68(b−5)

Degree z−4 z−3 z−2 z−1 z0

Coefficient 238.9(b−4) -110.79(b−3) 35.3(b−2) -6.94(b−1) 0.64(b0)

Table 3: Coefficients of N(z)
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Degree z−12 z−11 z−10 z−9

Coefficient 0.41(a−12) -4.76(a−11) 26.03(a−10) -87.86(a−9)

Degree z−8 z−7 z−6 z−5

Coefficient 203.91(a−8) -342.53(a−7) 426.97(a−6) -397.89(a−5)

Degree z−4 z−3 z−2 z−1 z0

Coefficient 275.14(a−4) -137.71(a−3) 47.38(a−2) -10.07(a−1) 1(a0)

Table 4: Coefficients of D(z)

Figure 7: Plotting frequency and phase response of filter using freqz command of MATLAB
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3.9 Realization using Direct Form II

Figure 8: Direct Form II Block Diagram for Hdiscrete,BSF (z)

The negative of the denominator coefficients appear as gains on the side of the input sequence x[n]
while the numerator coefficients appear on the side of the output y[n] as gains in the signal-flow
graph representation of the Direct Form II.

19
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3.10 FIR Filter Transfer Function using Kaiser Window

The tolerance in both the stopband and passband is given to be 0.15.
Therefore δ = 0.15 and we get the minimum stopband attenuation to be:

A = −20 log(0.15) = 16.4782dB

Since A < 21, we get β to be 0 where β is the shape parameter of Kaiser window.
Now to estimate the window length required, we use the empirical formula for the lower bound on
the window length.

N ≥ A− 7.95

2.285 ∗∆ωT

Here ∆ωT is the minimum transition width. In our case, the transition width is the same on either
side of the passband.

∆ωT =
2kHz ∗ 2π

250kHz
= 0.016π

∴ N ≥ 74

The above equation gives a loose bound on the window length when the tolerance is not very strin-
gent. On successive trials in MATLAB,it was found that a window length of 99 is required to satisfy
the required constraints. Also, since β is 0, the window is actually a rectangular window.

The time domain coefficients were obtained by first generating the ideal impulse response samples
for the same length as that of the window. The Kaiser Window was generated using the MATLAB
function and applied on the ideal impulse response samples. The band-stop impulse response samples
were generated as the difference between three low-pass filters( all-pass - bandpass ) as done in class.

20
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Figure 9: Time domain sequence values

The z-transform can simply be read off from the sequence values since its finite sequence.

21
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Figure 10: Plotting frequency and phase response of filter using freqz command of MATLAB

4 MATLAB Plots

4.1 Filter 1 - Bandpass

4.1.1 IIR Filter

From the above plot, I have verified that the passband tolerance and stopband attenuation have been
satisfied. In the above plot, the band edge frequencies have been marked. From the magnitude at
these frequencies it can be seen that the specifications required in the passband and the stopband
have been met.

22
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Figure 11: Frequency Response

Figure 12: Frequency Response with boundaries

It can be seen that the phase response is not linear.
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Figure 13: Frequency Response (in dB)

Figure 14: Frequency Response- Around Passband Limit 1

24
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Figure 15: Frequency Response- Around Passband Limit 2

Figure 16: Phase Response

4.1.2 FIR Filter

From the above plot, I have verified that the passband tolerance and stopband attenuation have been
satisfied. It can be seen that the FIR Filter is indeed giving us a Linear Phase response which is
desired.

25
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Figure 17: Pole-Zero map (all poles within unit circle, hence stable)

Figure 18: Frequency Response

In the above plot, the band edge frequencies have been marked. From the magnitude at these
frequencies it can be seen that the specifications required in the passband and the stopband have
been met.
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Figure 19: Time Domain Sequence

Figure 20: Magnitude Plot
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Figure 21: Frequency Response- Around Stopband Limit 1

Figure 22: Frequency Response- Around Stopband Limit 2
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4.2 Filter 2 - Bandstop

4.2.1 IIR Filter

Figure 23: Frequency Response

From the above plot, I have verified that the passband tolerance and stopband attenuation have been
satisfied. In the above plot, the band edge frequencies have been marked. From the magnitude at

Figure 24: Frequency Response with boundaries

these frequencies it can be seen that the specifications required in the passband and the stopband
have been met.
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Figure 25: Frequency Response (in dB)

Figure 26: Frequency Response- Around Passband Limit 1
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Figure 27: Frequency Response- Around Passband Limit 2

Figure 28: Frequency Response- Around Stopband Limit 2
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Figure 29: Phase Response

It can be seen that the phase response is not linear.

Figure 30: Pole-Zero map (all poles within unit circle, hence stable)
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4.2.2 FIR Filter

Figure 31: Frequency Response

From the above plot, I have verified that the passband tolerance and stopband attenuation have
been satisfied. It can be seen that the FIR Filter indeed gives us a Linear Phase response which is
desired.

Figure 32: Time Domain Sequence
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Figure 33: Magnitude Plot

In the above plot, the band edge frequencies have been marked. From the magnitude at these
frequencies it can be seen that the specifications required in the passband and the stopband have
been met.

Figure 34: Frequency Response- Around Passband Limit 2
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