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Abstract

Sylvester’s equation is introduced defining all the terms in it and its solvability conditions are
discussed. Definitions and algorithms to reduce it to AX +XB = C and then solve it have
been taken from well-accepted papers and accordingly referenced. Since all the literature on
this topic is decades old and most innovations on algorithms are complete, my assignment
suggests variations at its implementation in today’s software. In the end, an example is
solved using the algorithm to depict an understanding of the topic.
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1 Introduction

Sylvester matrix equation is a special case of the general linear equation
∑p

i=1AiXBi = E
which is given as

AXB + CXD = E (1)

in which all matrices are real (can be extended to complex valued case), A and C are m×m
and B and D are n×n matrices. E is m×n and the desired solution X is m×n. Sylvester
equations are a part of many systems and control theory problems. These equations have
important applications in stability analysis, observer design, output regulation problems and
eigenvalue assignment.[1]

Many algorithms to solve this equation have been proposed in literature. This home paper
assignment while looking at this equation’s solvability, also looks at different algorithms and
suggests some variations.

2 Solvability of AXB + CXD = E

In linear algebra, if A0, A1, . . . , Al are n × n complex matrices for some non-negative
integer l and Al 6= 0 (the zero matrix), then the matrix pencil of degree l is the matrix-valued
function defined on the complex numbers L(λ) =

∑l
i=0 λ

iAi. A particular case is a linear
matrix pencil is A−λB, where λ ∈ C (or R), A and B are complex (or real) n×n matrices.
A pencil is called regular if there is at least one value of λ such that det(A− λB) 6= 0. We
call eigenvalues of a matrix pencil all complex numbers λ for det(A − λB) = 0 The set of

the eigenvalues is called the spectrum of the pencil and is denoted σ(A,B).[2]

Now, it is proved that Equation (1) has a unique solution if and only
(i) if the matrix pencils A+ λC and D − λB are regular
(ii) the spectrum of A+ λC is disjoint from the spectrum of D − λB, i.e.,

σ(A,−C) ∩ σ(D,B) = ∅ . [3]

The statement can be thought of in a short and concise way. We consider the equations

(λ1A+ λ2C)XB + CX(λ1D − λ2B) = G (2)

(λ1A+ λ2C)XD − AX(λ1D − λ2B) = −F (3)

for some real λ1, and λ2, which are not both zero. One of the equations (2) or (3) is equivalent
to Equation (1). If conditions (i) and (ii) are satisfied, λ′is can be found so that the matrices
involving the λ′is are non-singular. Thus, solving equation (2) or (3) is equivalent to solving
an equivalent Sylvester equation, which yields a unique solution.

If either (or both) of the conditions (i) and (ii) are violated, some λ′is can be found such
that the matrices (λ1A+ λ2C) and (λ1D − λ2B) are singular. Let y 6= 0 and z 6= 0 be such
that (λ1A + λ2C)y = 0 and zH(λ1D − λ2B) = 0. Then cyzH , for any nonzero constant c,
will be a nontrivial solution of the homogeneous equation related to equation (2) or (3). As
a result, a solution cannot be unique, if it exists at all.

There are many algorithms to solve the equation. We will first look at the brute force
method.
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3 Brute Force

The Kronecker product matrix M ⊗ N is the block matrix whose (i, j) block mijN .

To solve Equation (1) by Brute Force[4], we rewrite it in the standard form as a linear
matrix-vector system:

Py = q (4)

where

P = BT ⊗ A+DT ⊗ C
y = (x1,1, x2,1, . . . , xm,1, x1,2, . . . , xm,n)T

q = (e1,1, e2,1, . . . , em,1, e1,2, . . . , em,n)T

Equation (4) can be solved by Gaussian elimination. However, since matrix P has di-
mensions mn×mn, this approach becomes time consuming and impractical except for small
systems. Considering today’s space or control systems, this algorithm is not put to use much.
So, instead let’s modify the equation a bit. If B and C are non-singular matrices, we can
pre-multiply both sides by C−1 and post-multiply by B−1, we get

C−1AX +XDB−1 = C−1EB−1 (5)

So, now it is in the standard form FX + XG = H and can be solved using standard
algorithms.[5][6] However, this works only when both B and C are non-singular, otherwise
we cannot define B−1 and C−1. Hence, a more general method is desirable.

4 Generalized Bartels-Stewart Method

The Bartel-Stewart method is a transformation method developed for solving equations
of the form AX +XB = C.[5]. However, for our equation we need to generalize it which we
do so by dividing in 3 main steps:

• Transformation to the reduced form

• Solution of the reduced equation

• Back transformation of the solution

To understand what the above steps mean, first let’s extend it to a more general case by
rewriting equation (1) as:

(Q1AZ1)(Z
T
1 XZ2)(Z

T
2 BQ

T
2 ) + (Q1CZ1)(Z

T
1 XZ2)(Z

T
2 DQ

T
2 ) = Q1EQ

T
2 (6)

where Q1, Z1, Q2, and Z2 are orthogonal matrices. Moler and Stewart’s QZ algorithm states
that for a matrix eigenvalue problem Ax = λBx, there are unitary matrices Q and Z so that
QAZ and QBZ are both upper-triangular.[7] Applying QZ to matrix pairs (A, C) and (D,
B), we can have Q1AZ1 = P and Q2D

TZ2 = T as quasi-upper-triangular and Q1CZ1 = S
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and Q2B
TZ2 = R as upper-triangular matrices. A quasi-upper-triangular matrix is a block

upper-triangular matrix where the blocks on the diagonal are 1 × 1 or 2 × 2. Complex
eigenvalues are found as the complex eigenvalues of those 2 × 2 blocks on the diagonal. 1 ×
1 blocks corresponding to the real eigen values.[8] Defining ZT

1 XZ2 = Y and Q1EQ
T
2 = F ,

we get:

PY RT + SY T T = F (7)

Since this equation now has a special triangular structure, it can be solved by back
substitution technique. Let ak denote the kth column of the matrix A. By this notation, for
kth column on each side of equation (7), we get:

P

n∑
j=k

rk,jyj + S
n∑

j=k−1

tk,jyj = fk (8)

The summation ranges reflect the upper-triangular nature of R and quasi-upper-triangular
nature of T . This can be rewritten as:

(rk,kP + tk,kS)yk + tk,k−1Syk−1 = fk −
n∑

j=k+1

(rk,jP + tk,jS)yj = fn−k
k (9)

where fJ
k can be defined by recursion as:

f 0
k = fk

fJ
k = fJ−1

k − rk,JPyJ − tk,JSyJ

Equation (7) can thus be solved columnwise by starting from the last (nth) column and
moving back to the first. Finally, X can be obtained by X = Z1Y Z

T
2 .

Due to its lower complexity, this method can be used for solving equations with large order
matrices. O(m3+n3) is the complexity of this method. It can also be implemented parallelly,
thus giving fast results.

5 Modified Hessenburg-Schur Method

Another method to solve the equation AX+XB = C is the Hessenburg-Schur method.[6]

In this method, the larger of the two matrices A or D, say A is bigger as an example, is
reduced only to upper Hessenburg form, while D is again reduced to quasi-upper-triangular
form. As in the Bartels-Stewart Method, B and C are reduced to upper-triangular matrices.
An upper Hessenberg matrix has zero entries below the first subdiagonal. Basically, the
major difference between the two methods is that only the first of QZ algorithm is applied
on (A, C), i.e., A is reduced to upper Hessenburg only while C is reduced to upper-triangular.
For (D, B) the algorithm runs till end like the previous method. The rest of the steps are
same as the Bartels-Stewart Method, except the number of subdiagonal elements on the LHS
of equation (9) changes accordingly.
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The resulting savings in computation time on the first QZ call to more than offset the
subsequent complication of the back substitution step.[4] Although the complexity is the
same as previous method, the number of flops is lesser. In fact, the subroutines required
for the Hessenberg-Schur variant of the Bartels-Stewart algorithm are used in the MATLAB
control system toolbox.

6 Example

Let’s consider a small example.(
1 2
2 1

)
X

(
1 2
1 2

)
+

(
1 0
0 1

)
X

(
−1 2
3 0

)
=

(
1 1
0 1

)
By doing QZ factorization of A and C, we get

Q1 =
1√
2

(
1 −1
1 1

)
Z1 =

1√
2

(
1 1
−1 1

)
(since the example is 2 × 2 not much effort is needed to make both upper triangular. For
higher order matrices, we stop at quasi so as to save computation.)
By doing QZ factorization of D and B, we get

Z2 =
1√
13

(
3 −2
2 3

)
Q2 =

1√
5

(
1 2
2 −1

)
Multiplying, we obtain

P = Q1AZ1 =

(
−1 0
0 3

)
S = Q1CZ1 =

(
1 0
0 1

)
RT = ZT

2 BQ
T
2 =

1√
65

(
25 0
5 0

)
T T = ZT

2 DQ
T
2 =

1√
65

(
15 0
3 26

)
Similarly,

F = Q1EQ
T
2 =

1√
10

(
1 2
5 0

)
Now, moving to next step in the method, i.e., solving for nth, or 2nd column of Y:

(r2,2P + t2,2S)y2 = f2

y2 =
1√
26

(
1 0

)T
(r1,1P + t1,1S)y1 = f1 − (r1,2P + t1,2S)y2

y1 =
1

18
√

26

(
−27 13

)T
(10)

Finally,

X = Z1Y Z
T
2 =

1

18

(
−3 1
6 1

)
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