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Abstract—Spin transport properties is of great significance in
developing magnon-based devices [1] and spintronics networks
[2], which have been studied in several systems such as magnetic
insulator [3]-[5] and metals [6]. Specifically, in this project,
we explore both the dynamical and steady-state spin potential
distribution in Permalloy, a kind of magnetic metal, in response
to spin injection on the boundary. We model the spin transport
and spin leakage using two kinds of spin resistors, model the
spin accumulation using a spin capacitor, and then construct
an tractable circuit diagram, in which we can make use of the
knowledge of simulation methods introduced in the class.

I. INTRODUCTION & MOTIVATIONS

A spintronics network propagates the information encoded
in spin degree of freedom. Transmission loss is always a limit
in different kinds of networks [7], [8]. In this project, we focus
on the spin current transport containing diffusion and damping
in Permalloy, a kind of ferromagnetic conductor [9], [10]. We
want to consider about a magnetic waveguide modeled by a
1D geometry shown in Fig. 1(a) or a 2D geometry to model
it more precisely (will add later). The structure contains two
Platinum strips deposited on both sides of a Permalloy bar.
One Platinum strip acts as an injector, where the spin current
is generated due to Spin Hall Effect (SHE). SHE injects spins
with a specific direction, changing the chemical potential of
magnon, a quasi-particle represents the collective excitation
of the electrons’ spin structure in a crystal lattice. Magnon
will then diffuse and damp in permalloy. The other one acts
as a detector, where the spin current is transformed to charge
current due to inverse Spin Hall Effect ISHE). Here, the spin
current transport within Permalloy is governed by the diffusion
equation and the Helmholtz-type equation [1]:

Vs = b2 (1)
gsf
where jg is the spin current, us is the spin chemical potential,
and other parameters are associated with the properties of
Permalloy. In Fig. 1(b), we show the the equivalent circuit
diagram of the one-dimensional (1D) spin current transport
model (higher dimensions will be discussed in the following
work), where node 0’ and N represents the Platinum/Permal-
loy interface of the injector and detector. In our network, we
make the discretization on the Permalloy bar and get nodes
1,2, ..., N, and each of them is associated with a spin chemical
potential u;. Two neighboring nodes are connected through
a spin resistor R, as well as a spin capacitor originated
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Fig. 1. (a) Spin current transport in Platinum/Permalloy/Platinum heterostruc-
ture [4]. (b) Equivalent circuit diagram for the spin current model.

from the spin-accumulation effect. Besides, each node is also
connected with ground through a resistor Ra, which represents
the damping, i.e., spin leakage.

II. PROBLEM FORMULATION

The state of our system is spin chemical potential p; on
each node. Here we use x; to substitute all of them, where:

T = [:LLDIUQW"?MN]T (2)

The parameters we need are [9], [10]: & = 1.05 X 10734 J s,
e = 1.6 x 1071 C, AL = L/N is the distance between
two neighboring nodes, p. = 2.3 x 1078 Q- m is the charge
resistivity, fgr = 4.5 x 1072 m is the spin diffusion length,
and 7y = 4.0 x 107! s is the spin relaxation time (all values
at room temperature 300 K). Here we set:

b= [hve7LaNa peaTagsfaTsf]T (3)

Multiple sources can be considered in our system. However,
to make the problem clear, we only consider about one source.
Therefore, our source vector is:
T
u = [uinj,O,...,O] (4)
In time domain, at a specific time ¢y Our final set of equations
that describe entirely the problem is:
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Here Ry = 4ep,AL/k the diffusion-related resistance,

Ry = 4depcl%/hAL the damping-related resistance, C' =
hTsf/4€,0CAL, R/ = 71/R1 - 1/2R2, R” = 1/2R1

The quantities of interest we care to observe is the chemical
distribution:

Y1 = [p, 2y ey v) " 9
III. FUNDAMENTAL NUMERICAL METHODS

For the time dynamics, we utilized the Forward Euler
method as well as the trapezoidal method with fixed time steps
and logarithmic stepping. We ended up using the latter two
for our results and the pseudo code for these two methods
are shown in Algorithms 1 and 2 respectively. Note that no
inverse were computed directly and MATLAB’s \ was used
wherever inverse is shown in the pseudo code.

IV. THE TECHNICAL CHALLENGE

When using Gradient Conjugate Residual (GCR) method
to calculate static case in our model. Convergence precon-
ditioners can be used to decrease the number of iteration
times, making calculation more efficient. Here we show two
preconditioners. The first one is Jacobi preconditioner or
diagonal preconditioner, the other one is a kind of sparse
preconditioner. Here we choose the tridiagonal part of matrix
A as A. Then the GCR method is applied to make the
calculation. The pseudocode is shown in Algorithm 3.

V. RESULTS

In Fig. 2, we run a fixed time trapezoidal method with a
time step of le-18 and show the distribution of the chemical
potential across a 2D permalloy at 6 different time steps, with
the final being the steady state result. In order to check for
plausibility of our result, we compare with the result published
in [1] as shown in Fig. 3. The distribution of steady state
shown is similar to what we see although the material used is
an insulator, which is different from our permalloy.

Algorithm 1 Dynamics using trapezoidal solver for linear
system with fixed time step
Require: N: number of nodes; tg: start time; t.: end time;
dt: time step; p: parameter vector; u: fi,j input
function COMPUTE_A_B(V, p)
return A, b (as discussed in Section III)
end function
function EVALF(z, A, b)
f=Ax+bu
return f
end function
J=1-AAt/2
[L, U, P] = LU decomposition of J

function TRAPEZOIDAL(eval f, At, N,u, A, b, L, U, P, ts,t.)

t=ts
j=1
x; = null vector of size N
repeat
I'=a; + (At % (eval f(x, A,b) + (bxu))/2)
y=L"YPxT)
z; =U"1y
V(j) =
j=i+1
t=t+ At
until ¢ > ¢,
return v

end function

Another way to verify if our circuit model is working fine
is to simulate a smaller model on an online circuit simulator
and check if the results we are getting match those. Fig. 4(c)
shows the circuit simulated is a small 5x5 grid. Figs. 4(a) and
(b) compare the results for uin; = 87 kV. (The pipj is high
as the online simulator outputs 0 for any voltage below 1 nV.
It also shows the robustness of our model, that it can work
over a very large range of yinj). Fig. 4(d) plots the % error at
each node which is less than 0.4% everywhere, verifying the
correctness of our code.

Logarithmic time steps are useful in our simulation as our
dynamics change fast initially and move to a steady state.
Having a small fixed step takes longer too. The same time
range as before is run but with 2.5% of the number of steps
that fixed time step of 10717 s took. Here, our steps are spaced
logarithmically. We see about 70% decrease in the simulation
time (4.54 s for fixed at 10717 s vs 2.61 s). In Fig. 5, we
compare the error of the logarithmic stpping with a reference
solution of fixed step with 10718 s. For the earlier part, the
error is larger, and it goes down as we go to steady state.
We conclude that to obtain a fast visualization, where the user
is alright with a 10% error, logarithmic time stepping can be
used.

The effect of convergence preconditioners are shown in Fig.
6, from which we can see the Jacobi preconditioner is not
efficient but the sparse preconditioner we chooose is much
more efficient and can improve the number of iterations by a



Algorithm 2 Dynamics using trapezoidal solver for linear
system with logarithmic time step
Require: N: number of nodes; ¢: start time; t5: end time; p:
parameter vector; u: finj input
function COMPUTE_A_B(V, p)
return A, b (as discussed in Section III)
end function
function EVALF(z, A, b)
f=Ax+bu
return f
end function
function TRAPEZOIDAL(eval f, At;, N,u, A, b, ts,t.)
tt = [ts, te] divided in logarithmic intervals
j=1
t=ts
x; = null vector of size N
repeat
At = tt(j + 1) — tt(j)
I'=x; + (At x (eval f(z, A,b) + (bxw))/2)
x; = (I — AAt/2)71T
V(i) =
j=j+1
t = 1t(j)
until ¢ > ¢,
return v
end function

factor of 6.

VI. TECHNICAL DISCUSSION

From Fig. 2, we found the total time to make the system
stable is only 107125, meaning that it is very easy to be stable
for our system. It is very important when we want to use it to
transfer information. Unfortunately, the loss in Permalloy is a
little bit large because of damping. One way to make it better
is do it with low temperature.

VII. ETHICS & LIMITATIONS

The calculation results of spin transport properties in this
project might benefit quantum engineers and circuit engineers.
For quantum engineers, they have a better understanding of the
spin transport behavior in the ferromagnetic conductors and
can therefore better manipulate spin currents to realize the
transmission of quantum information. For circuit engineers,
they have a better understanding of the advantages of spin-
tronic devices compared with the conventional charge-based
electronics, and will therefore pay attention to design spin-
based circuits or neural networks.

Understanding the fundamental limitations is also important
to determine whether the spin current transport mentioned
in this project suitable for a certain application. The first
important thing to note is that the numerical results presented
are highly dependent on the parameters such as /g and
L, as shown in PM2. Due to this, no methods have been

Algorithm 3 Sparse Preconditioner
Require: A, b
function TGCR_PRECOND(A, b, tol, maxiters)
A+ Tridiagonal(A)
[L,U,Perm] < lu(A)
r = U\(L\(Perm x b))
repeat
k+—k+1
pik)=r
Ap(:, k) = U\(L\(Perm x A X p(:, k)))
if £ > 1 then
repeat
B = Ap(;, k)" < Ap(:, j)
PG k) =p(, k) — B xp(:,J)
Ap(:, k) = Ap(:, k) — B x Ap(:, j)
j=j+1
until j > k
end if
norm_Ap = norm(Ap(:, k), 2)
Ap(:, k) = Ap(:, k) /norm_Ap
p(:, k) = p(:, k) /norm_Ap
a=1"x Ap(:, k)
r=z+axp(,k)
r=r—ax Ap(,k)
rn(k 4+ 1) = norm(r, 2)
until r,(k +1)/r,(1) < tol or k > maxiters
return z, k
end function

implemented to check if the results of the model quantita-
tively reflect the real case. Until now, compared with the
existing experimental results, we can only make sure our
calculation results are qualitatively correct. Second, our model
approximates spin accumulation as spin capacitors which is
not 100% accurate, since this approximation only applies to
the case where the totally length of the bar L is in the same
level of order as /. Third, regarding the physical structure,
we assume Permalloy is uniform everywhere by taking the
same parameters at every node. This material homogeneity
assumption is not always perfect in reality, and the slight
change of local parameters might lead to significant impacts.
Fourth, since magnons carries not only spin momenta but also
heat/energy flows, there are heat transfer effects which we
are not considering and might interact with the spin transfer
phenomenon.

VIII. CONCLUSIONS

In this project, we explore the spin transport properties
in Permalloy by numerically calculating the spin potential
distribution. We model the process of spin current transport by
using two types of spin resistors to represent the spin transport
process and spin leakage effect respectively, and also use
one type of spin capacitor to represent the spin accumulation
effect that introduces dynamics. Compared with the existing
published results, our calculation qualitatively shows great
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Fig. 2. The spin potential (x) distribution across the 2D permalloy is shown
at 6 different time steps with (f) being the steady state for a 20x20 grid with
Hinj = 8.7uV

(@)

8 1 3 2 15

7 0
% 6 N
=S5 =)
3
T, 3

3

2

~200
1 r T T T r T T T T T
-400 -200 o 200 400
0 X (nm)

Fig. 3. This, plot taken from [1], shows distribution of the steady state similar
to what we see from our simulation. Although their material is an insulator,
(different from our permalloy), this shows our model is plausible.

consistency. We utilize the numerical techniques presented in
the class, such as using GCR to calculated the steady state,
using Jacobi/diagonal preconditioner to decrease the number
of iterations, and using Trapezoidal to simulate the dynamic
process. We believe our project is a good demonstration for the
various numerical techniques, and will also benefit quantum
engineers and circuit engineers who would like to make use
of spin currents to transport information and energy.
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