

83: A 0.75mm² 407µW real-time speech audio denoiser with quantized cascaded redundant convolutional encoder-decoder for wearable IoT devices

Dimple Vijay Kochar, Maitreyi Ashok, Anantha P. Chandrakasan

Electrical Engineering and Computer Science Massachusetts Institute of Technology, Cambridge, MA

Outline

- Introduction
- Design Features
 - Algorithm Design
 - Quantization Scheme
 - Top-level Chip Architecture
 - 1D Convolution Dataflow
- Results
- Conclusion

Outline

- Introduction
- Design Features
 - Algorithm Design
 - Quantization Scheme
 - Top-level Chip Architecture
 - 1D Convolution Dataflow
- Results
- Conclusion

Growing Need for Audio Denoising in Wearable IoT Devices

Growing Need for Audio Denoising in Wearable IoT Devices

- Wearable IoT devices require effective audio denoising
 - Clear communication during calls
 - High-quality audio recordings
 - Enhanced voice assistants

Growing Need for Audio Denoising in Wearable IoT Devices

- Wearable IoT devices require effective audio denoising
 - Clear communication during calls
 - High-quality audio recordings
 - Enhanced voice assistants

Growing Need for Audio Denoising in Wearable IoT Devices

- Wearable IoT devices require effective audio denoising
 - Clear communication during calls
 - High-quality audio recordings
 - Enhanced voice assistants

 Audio denoising is a complex task involving audio reconstruction

Audio Denoising is Hard for Wearable IoT Devices

Audio Denoising is Hard for Wearable IoT Devices

- Wearables require:
 - Superior audio quality
 - Low power consumption
 - Realtime performance

Audio Denoising is Hard for Wearable IoT Devices

- Classical methods are rigid noise estimation
 - Fixed algorithms and parameters

- Wearables require:
 - Superior audio quality
 - Low power consumption
 - Realtime performance

Audio Denoising is Hard for Wearable IoT Devices

 $|\hat{X}_m(\omega)|^2 = |Y_m(\omega)|^2 - E\left[|D_m(\omega)|^2\right]$

- Classical methods are rigid noise estimation
 - Fixed algorithms and parameters

- Wearables require:
 - Superior audio quality
 - Low power consumption
 - Realtime performance

- CNNs offer flexibility but demand efficiency
 - Generalizable across noise types
 - Finetune/retrain, downstream deploy

Past ML-Based Audio Processing

Past ML-Based Audio Processing

High Performance:

 Recent deep learning algorithms excel in audio processing

Past ML-Based Audio Processing

 Recent deep learning algorithms excel in audio processing

Challenges:

- High computational complexity
- Large model sizes
- Substantial power and resource requirements

Past ML-Based Audio Processing

 Recent deep learning algorithms excel in audio processing

Challenges:

- Large model sizes
- Substantial power and resource requirements

Feasibility Issues:

 Unsuitable for IoT devices due to energy and size constraints

Past ML-Based Audio Processing

 Recent deep learning algorithms excel in audio processing

Challenges:

- High computational complexity
- Large model sizes
- Substantial power and resource requirements
- Feasibility Issues:
- Unsuitable for IoT devices due to energy and size constraints

 Convolutional Encoder-Decoder (CED) models show promise in frequency-domain audio processing

 Practicality depends on efficient hardware design to reduce computational demands

Our Solution: A Real-Time Low-Power Denoising System

Our Solution: A Real-Time Low-Power Denoising System

Our Solution: A Real-Time Low-Power Denoising System

Lower computational costs with optimized quantization

Our Solution: A Real-Time Low-Power Denoising System

Lower computational costs with optimized quantization

Low on-chip memory accesses, highest audio quality score

Our Solution: A Real-Time Low-Power Denoising System

Lower computational costs with optimized quantization

Low on-chip memory accesses, highest audio quality score

Processes audio in 8ms per frame, consumes 407µW

Our Solution: A Real-Time Low-Power Denoising System

Lower computational costs with optimized quantization

Low on-chip memory accesses, highest audio quality score

Processes audio in 8ms per frame, consumes 407µW

Outline

- Introduction
- Design Features
 - Algorithm Design
 - Quantization Scheme
 - Top-level Chip Architecture
 - 1D Convolution Dataflow
- Results
- Conclusion

Algorithm Design End-to-end Audio Denoiser Pipeline

End-to-end Audio Denoiser Pipeline

End-to-end Audio Denoiser Pipeline

Audio captured by microphone

End-to-end Audio Denoiser Pipeline

Audio captured by microphone

1D Time series

DESIGN CINEDADE System

End-to-end Audio Denoiser Pipeline

Audio captured by microphone

1D Tim series

2D Time – Frequency series

DESIGN Embedded System

End-to-end Audio Denoiser Pipeline

Audio captured by microphone

1D Time series

2D Time – Frequency series

129: Magnitude vectors from the 256-point STFT, 129 points retained (symmetric half of 256)

End-to-end Audio Denoiser Pipeline

Audio captured by microphone

1D Time series

2D Time – Frequency series **129:** Magnitude vectors from the 256-point STFT, 129 points retained (symmetric half of 256)

End-to-end Audio Denoiser Pipeline

Audio captured by microphone

1D Time series

2D Time – Frequency series **129:** Magnitude vectors from the 256-point STFT, 129 points retained (symmetric half of 256)

End-to-end Audio Denoiser Pipeline

Audio captured by microphone

1D Time series

2D Time – Frequency series **129:** Magnitude vectors from the 256-point STFT, 129 points retained (symmetric half of 256)

Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

Treated as 2D image

Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

Treated as 2D image

Single 2D conv

Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

Treated as 2D image

Single 2D conv

Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

Treated as 2D image

Single 2D conv

Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

Treated as 2D image

Single 2D conv

Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

Treated as 2D image

Single 2D conv

Mask vector: multiplied by the noisy frame to obtain the denoised audio STFT

Outline

- Introduction
- Design Features
 - Algorithm Design
 - Quantization Scheme
 - Top-level Chip Architecture
 - 1D Convolution Dataflow
- Results
- Conclusion

8-bit weight, activation quantization

8-bit weight, activation quantization

Weight: $w = s_w * (q_w - z_w); z_w = 0$

Input: $i = s_i * (q_i - z_i)$

Output: $o = s_o * (q_o - z_o)$

Offset: $b = s_b * (q_b - z_b); z_b = 0$

8-bit weight, activation quantization

Weight: $w = s_w * (q_w - z_w); z_w = 0$

Input: $i = s_i * (q_i - z_i)$

Output: $o = s_o * (q_o - z_o)$

Offset: $b = s_b * (q_b - z_b); z_b = 0$

float32 scale factors:

 S_w, S_i, S_o, S_b

8-bit weight, activation quantization

Weight: $w = s_w * (q_w - z_w); . z_w = 0$

Input: $i = s_i * (q_i - z_i)$ Output: $o = s_o * (q_o - z_o)$

Offset: $b = s_b * (q_b - z_b); z_b = 0$

 S_w, S_i, S_o, S_b

8-bit quantized values stored onchip: q_w , q_i , q_o , q_b

8-bit weight, activation quantization

Weight: $w = s_w * (q_w - z_w); z_w = 0$

Input: $i = s_i * (q_i - z_i)$

Output: $o = s_o * (q_o - z_o)$ Offset: $b = s_b * (q_b - z_b)$; $z_b = 0$

 S_w, S_i, S_o, S_b

8-bit quantized values stored onchip: q_w , q_i , q_o , q_b 8-bit zero-points:

 $\boldsymbol{z}_{w}, \boldsymbol{z}_{i}, \boldsymbol{z}_{o}, \boldsymbol{z}_{b}$

8-bit weight, activation quantization

Weight: $w = s_w * (q_w - z_w); z_w = 0$

Input: $i = s_i * (q_i - z_i)$

Output: $o = s_o * (q_o - z_o)$ Offset: $b = s_b * (q_b - z_b)$; $z_b = 0$

float32 scale factors:

 S_w, S_i, S_o, S_b

8-bit quantized values stored onchip: q_w , q_i , q_o , q_b

8-bit zero-points:

 $\boldsymbol{z}_{w}, \boldsymbol{z}_{i}, \boldsymbol{z}_{o}, \boldsymbol{z}_{b}$

$$o_n = \sum w_{n,k} * i_{n,k} + b_n$$

8-bit weight, activation quantization

Input:
$$i = s_i * (q_i - z_i)$$

Output:
$$o = s_o * (q_o - z_o)$$

Offset: $b = s_b * (q_b - z_b)$; $z_b = 0$

$$S_w, S_i, S_o, S_b$$

8-bit quantized values stored onchip: q_w , q_i , q_o , q_b

$$\mathbf{z}_w, \mathbf{z}_i, \mathbf{z}_o, \mathbf{z}_b$$

$$o_n = \sum w_{n,k} * i_{n,k} + b_n$$

8-bit weight, activation quantization

Input:
$$i = s_i * (q_i - z_i)$$

Output:
$$o = s_o * (q_o - z_o)$$

Offset: $b = s_b * (q_b - z_b)$; $z_b = 0$

 S_w, S_i, S_o, S_b

8-bit quantized values stored onchip: q_w , q_i , q_o , q_b

$$\boldsymbol{z}_{w}, \boldsymbol{z}_{i}, \boldsymbol{z}_{o}, \boldsymbol{z}_{b}$$

$$o_n = \sum w_{n,k} * i_{n,k} + b_n$$

$$s_{o,n} * (q_{o,n} - z_{o,n}) = \sum [s_{w,n} * q_{w,n,k} * s_{i,n} * (q_{i,n,k} - z_{i,n})] + s_{b,n} * q_{b,n}$$

8-bit weight, activation quantization

$$w = s_w * (q_w - z_w); z_w = 0$$

Input:

$$i = s_i * (q_i - z_i)$$

$$= s_i * (q_i - z_i)$$

 $= s_i * (q_i - z_i)$

$$o = s_o * (q_o - z_o)$$

Output:

$$b = s_b * ($$

$$b = s_b * (q_b - z_b); z_b = 0$$

$$S_w, S_i, S_o, S_b$$

8-bit quantized values stored on-

chip: q_w , q_i , q_o , q_b

$$\boldsymbol{z}_{w}, \boldsymbol{z}_{i}, \boldsymbol{z}_{o}, \boldsymbol{z}_{b}$$

$$o_n = \sum w_{n,k} * i_{n,k} + b_n$$

$$s_{o,n} * (q_{o,n} - z_{o,n}) = \sum [s_{w,n} * q_{w,n,k} * s_{i,n} * (q_{i,n,k} - z_{i,n})] + s_{b,n} * q_{b,n}$$

$$q_{o,n} = \left[gamma_n * \left(\sum q_{w,n,k} * q_{i,n,k} + offset_n\right)\right] \gg shift_n$$
 Where,

$$gamma_{n} \gg shift_{n} = s_{w,n} * s_{i,n} * s_{o,n}^{-1}$$
 $offset_{n} = (z_{o,n}s_{o,n} + s_{b,n}q_{b,n})s_{w,n}^{-1}s_{i,n}^{-1} - z_{i,n}\Sigma q_{w,n,k}$

8-bit weight, activation quantization

Output:

Offset:

$$w = s_w * (q_w - z_w); z_w = 0$$

Input:

$$i = s_i * (q_i - z_i)$$

$$= s_i * (q_i - z_i)$$

$$= s_i * (q_i - z_i)$$

$$= s_o * (q_o - z_o)$$

$$o = s_o * (q_o - z_o)$$

$$b = s_o * (q_o - z_o)$$

$$= s_b * (q_b)$$

$$b=s_b*(q_b-z_b); z_b=0$$

$$s_w, s_i, s_o, s_b$$

8-bit quantized values stored on-

chip: q_w , q_i , q_o , q_b

$$\mathbf{Z}_{w}, \mathbf{Z}_{i}, \mathbf{Z}_{o}, \mathbf{Z}_{b}$$

$$o_n = \sum w_{n,k} * i_{n,k} + b_n$$

$$s_{o,n} * (q_{o,n} - z_{o,n}) = \sum \left[s_{w,n} * q_{w,n,k} * s_{i,n} * (q_{i,n,k} - z_{i,n}) \right] + s_{b,n} * q_{b,n}$$

$$q_{o,n} = \left[gamma_n * \left(\sum_{q_{w,n,k}} q_{i,n,k} + offset_n \right) \right] \gg shift_n$$
 Where,

$$gamma_{n} \gg shift_{n} = s_{w,n} * s_{i,n} * s_{o,n}^{-1}$$
 $offset_{n} = (z_{o,n}s_{o,n} + s_{b,n}q_{b,n})s_{w,n}^{-1}s_{i,n}^{-1} - z_{i,n}\Sigma q_{w,n,k}$

8-bit weight, activation quantization

Input: $i = s_i * (q_i - z_i)$ Output: $o = s_o * (q_o - z_o)$

Offset: $b = s_b * (q_b - z_b); z_b = 0$

 S_w, S_i, S_o, S_b

8-bit quantized values stored onchip: q_w , q_i , q_o , q_b

8-bit zero-points:

$$\boldsymbol{z}_{w}, \boldsymbol{z}_{i}, \boldsymbol{z}_{o}, \boldsymbol{z}_{b}$$

$$o_n = \sum w_{n,k} * i_{n,k} + b_n$$

$$s_{o,n} * (q_{o,n} - z_{o,n}) = \sum [s_{w,n} * q_{w,n,k} * s_{i,n} * (q_{i,n,k} - z_{i,n})] + s_{b,n} * q_{b,n}$$

$$q_{o,n} = ig[gamma_n * ig(\Sigma ig[q_{w,n,k} * q_{i,n,k} ig] + offset_n ig) ig] \gg shift_n$$
 Where,

$$gamma_{n} \gg shift_{n} = s_{w,n} * s_{i,n} * s_{o,n}^{-1}$$
 $offset_{n} = (z_{o,n}s_{o,n} + s_{b,n}q_{b,n})s_{w,n}^{-1}s_{i,n}^{-1} - z_{i,n}\Sigma q_{w,n,k}$

Minimal drop in performance 2.83 to 2.79 PESQ

in the audio quality evaluation score

Skip Connections, Per-kernel Adaptive Rounding

Skip Connections, Per-kernel Adaptive Rounding

Skip connection computation:

$$o_3 = o_1 + o_2$$

 $s_3(q_{o,3} - z_3) = s_1(q_{o,1} - z_1) + s_2(q_{o,2} - z_2)$

Skip Connections, Per-kernel Adaptive Rounding

Skip connection computation:

$$o_3 = o_1 + o_2$$

 $s_3(q_{o,3} - z_3) = s_1(q_{o,1} - z_1) + s_2(q_{o,2} - z_2)$

$$q_{o,3} = (s_{skip,1}q_{o,1} + s_{skip,2}q_{o,2} + offset_{skip}) \gg shift_{skip}$$

Skip Connections, Per-kernel Adaptive Rounding

Skip connection computation:

$$egin{aligned} o_3 &= o_1 + o_2 \ s_3 ig(q_{o,3} - z_3 ig) &= s_1 ig(q_{o,1} - z_1 ig) + s_2 ig(q_{o,2} - z_2 ig) \end{aligned}$$

$$q_{o,3} = (s_{skip,1}q_{o,1} + s_{skip,2}q_{o,2} + offset_{skip}) \gg shift_{skip}$$

Where,

$$s_{skip,i} \gg shift_{skip} = rac{s_i}{s_3}, \quad i = 1, 2$$
 $offset_{skip} \gg shift_{skip} = z_3 - \left(rac{s_1}{s_3}
ight)z_1 - \left(rac{s_2}{s_3}
ight)z_2$

Skip Connections, Per-kernel Adaptive Rounding

Skip connection computation:

$$o_3 = o_1 + o_2$$

 $s_3(q_{o,3} - z_3) = s_1(q_{o,1} - z_1) + s_2(q_{o,2} - z_2)$

$$q_{o,3} = (s_{skip,1}q_{o,1} + s_{skip,2}q_{o,2} + offset_{skip}) \gg shift_{skip}$$

Where,

$$s_{skip,i} \gg shift_{skip} = rac{s_i}{s_3}, \quad i = 1, 2$$
 $offset_{skip} \gg shift_{skip} = z_3 - \left(rac{s_1}{s_3}
ight)z_1 - \left(rac{s_2}{s_3}
ight)z_2$

Per-kernel adaptive rounding: Determines how to round and at which precision Adding a constant to $offset_n$ while eliminating the need for a comparator

Outline

- Introduction
- Design Features
 - Algorithm Design
 - Quantization Scheme
 - Top-level Chip Architecture
 - 1D Convolution Dataflow
- Results
- Conclusion

ULSI) Solution Control System

- Reconfigurable Chip Architecture:
 - Dynamic configuration for 2D/1D convolution operations, tailored to input and kernel requirements.

- Reconfigurable Chip Architecture:
 - Dynamic configuration for 2D/1D convolution operations, tailored to input and kernel requirements.
- On-Chip Data Loading:
 - All weights and quantization parameters preloaded, minimizing external data transfers to reduce latency and power.

- Reconfigurable Chip Architecture:
 - Dynamic configuration for 2D/1D convolution operations, tailored to input and kernel requirements.
- On-Chip Data Loading:
 - All weights and quantization parameters preloaded, minimizing external data transfers to reduce latency and power.
- Optimized Precision and Power:
 - Activations stored in 8-bit precision.
 - Power-gated memory logic reduces power during inactivity.

- Reconfigurable Chip Architecture:
 - Dynamic configuration for 2D/1D convolution operations, tailored to input and kernel requirements.
- On-Chip Data Loading:
 - All weights and quantization parameters preloaded, minimizing external data transfers to reduce latency and power.
- Optimized Precision and Power:
 - Activations stored in 8-bit precision.
 - Power-gated memory logic reduces power during inactivity.
- Efficient Data Processing:
 - Conv2D block reduces 2D to 1D; 1D convolver completes operations with residual memory for skip connections.

Outline

- Introduction
- Design Features
 - Algorithm Design
 - Quantization Scheme
 - Top-level Chip Architecture
 - 1D Convolution Dataflow
- Results
- Conclusion

1D Convolution Dataflow

Architecture

1D Convolution Dataflow

Architecture

 Processes one kernel at a time with PE

 Enables synchronous computation of up to 9 channels

Carry-Save Adder Tree

1D Convolution Dataflow

PE Activation Routing Dataflow

- Energy Optimization via Memory Access Reduction; PE input routing and weight mapping schemes
- Final PE computes a complete kernel convolution output every cycle

Outline

- Introduction
- Design Features
 - Algorithm Design
 - Quantization Scheme
 - Top-level Chip Architecture
 - 1D Convolution Dataflow
- Results
- Conclusion

Technology	TSMC 28nm HPC+
Core area	0.75 mm ²
On-chip SRAM	75.5kB
Supply voltage	0.65 – 1V
Frequency	18.5MHz
Power	407μW (@ 0.65V, 18.5MHz)
Efficiency	3.24µJ/frame

FPGA
XEM7001 Packaged Measurement
(below) Die PCB

Measured voltage scalability of this work

PESQ comparison with prior works

• [9] – CNN based FPGA design [10] - 1D depthwise-separable convolution layers, a gated recurrent unit based ASIC

	TCAS-II'21 [7]	INTERSPEECH'20 [8]		JSSC'20 [9]	ISSCC'23 [10]	This Work
Implementation	Synthesized ASIC	FPGA	FPGA	ASIC	ASIC	ASIC
Technology (nm)	90	-	-	40	28	28
Core Area (mm²)	11.4	-	-	4.2	0.81	0.75
FFT Window / Hop	512/-	512 / 256	400 / 100	256 / 128	512 / 256	256 / 64
Frequency (MHz)	500	-	-	5 - 20	2.5 - 20	18.5 – 25
On-Chip SRAM (kB)		313.7	434.67	327	35	75.5
Power (mW)	636 (1.2V, 500MHz)	272	147.2	2.17 (0.6V, 5MHz)	0.74 (0.8V, 2.5MHz); 1.365 (1V, 2.5MHZ) ^b	0.407ª (0.65V, 18.5MHz)
Frames/sec	-	63	160	125	63	125
Efficiency (µJ/frame)	10095.24°	4317.46	920	17.36	11.75	3.24ª
Dataset	TIMIT	CHiME2	CHiME2	CHiME2	CHiME2	CHiME2
PESQ	1.52	-	-	2.38 ^d	2.73	2.79

^aexcludes off-chip processing and STFT

^bML processing power from place-and-route netlist (excludes preprocessing: I/O Buffer, FFT, Window, Mel filter)

^cAs per [9], assuming hop size = 50% of FFT window size
^dfp32 implementation of [8] by [9]

	TCAS-II'21 [7]	INTERSPEECH'20 [8]		JSSC'20 [9]	ISSCC'23 [10]	This Work
Implementation	Synthesized ASIC	FPGA	FPGA	ASIC	ASIC	ASIC
Technology (nm)	90	-	-	40	28	28
Core Area (mm²)	11.4	-	-	4.2	0.81	0.75
FFT Window / Hop	512/-	512 / 256	400 / 100	256 / 128	512 / 256	256 / 64
Frequency (MHz)	500	-	-	5 - 20	2.5 - 20	18.5 – 25
On-Chip SRAM (kB)		313.7	434.67	327	35	75.5
Power (mW)	636 (1.2V, 500MHz)	272	147.2	2.17 (0.6V, 5MHz)	0.74 (0.8V, 2.5MHz); 1.365 (1V, 2.5MHZ) ^b	0.407ª (0.65V, 18.5MHz)
Frames/sec	-	63	160	125	63	125
Efficiency (µJ/frame)	10095.24°	4317.46	920	17.36	11.75	3.24ª
Dataset	TIMIT	CHiME2	CHiME2	CHiME2	CHiME2	CHIME2
PESQ	1.52	-	-	2.38 ^d	2.73	2.79

^aexcludes off-chip processing and STFT

^bML processing power from place-and-route netlist (excludes preprocessing: I/O Buffer, FFT, Window, Mel filter)

 $^{^{\}circ}$ As per [9], assuming hop size = 50% of FFT window size $^{\circ}$ dfp32 implementation of [8] by [9]

	TCAS-II'21 [7]	INTERSPEECH'20 [8]		JSSC'20 [9]	ISSCC'23 [10]	This Work
Implementation	Synthesized ASIC	FPGA	FPGA	ASIC	ASIC	ASIC
Technology (nm)	90	-	-	40	28	28
Core Area (mm²)	11.4	-	-	4.2	0.81	0.75
FFT Window / Hop	512/-	512 / 256	400 / 100	256 / 128	512 / 256	256 / 64
Frequency (MHz)	500	-	-	5 - 20	2.5 - 20	18.5 – 25
On-Chip SRAM (kB)		313.7	434.67	327	35	75.5
Power (mW)	636 (1.2V, 500MHz)	272	147.2	2.17 (0.6V, 5MHz)	0.74 (0.8V, 2.5MHz); 1.365 (1V, 2.5MHZ) ^b	0.407ª (0.65V, 18.5MHz)
Frames/sec	-	63	160	125	63	125
Efficiency (µJ/frame)	10095.24°	4317.46	920	17.36	11.75	3.24ª
Dataset	TIMIT	CHiME2	CHiME2	CHiME2	CHiME2	CHiME2
PESQ	1.52	-	-	2.38 ^d	2.73	2.79

^aexcludes off-chip processing and STFT

^bML processing power from place-and-route netlist (excludes preprocessing: I/O Buffer, FFT, Window, Mel filter)

^cAs per [9], assuming hop size = 50% of FFT window size dfp32 implementation of [8] by [9]

	TCAS-II'21 [7]	INTERSPEECH'20 [8]		JSSC'20 [9]	ISSCC'23 [10]	This Work
Implementation	Synthesized ASIC	FPGA	FPGA	ASIC	ASIC	ASIC
Technology (nm)	90	-	-	40	28	28
Core Area (mm²)	11.4	-	-	4.2	0.81	0.75
FFT Window / Hop	512/-	512 / 256	400 / 100	256 / 128	512 / 256	256 / 64
Frequency (MHz)	500	-	-	5 - 20	2.5 - 20	18.5 – 25
On-Chip SRAM (kB)		313.7	434.67	327	35	75.5
Power (mW)	636 (1.2V, 500MHz)	272	147.2	2.17 (0.6V, 5MHz)	0.74 (0.8V, 2.5MHz); 1.365 (1V, 2.5MHZ) ^b	0.407ª (0.65V, 18.5MHz)
Frames/sec	-	63	160	125	63	125
Efficiency (µJ/frame)	10095.24°	4317.46	920	17.36	11.75	3.24ª
Dataset	TIMIT	CHiME2	CHiME2	CHiME2	CHiME2	CHIME2
PESQ	1.52	-	-	2.38 ^d	2.73	2.79

^aexcludes off-chip processing and STFT

^bML processing power from place-and-route netlist (excludes preprocessing: I/O Buffer, FFT, Window, Mel filter)

^cAs per [9], assuming hop size = 50% of FFT window size
^dfp32 implementation of [8] by [9]

	TCAS-II'21 [7]	INTERSPEECH'20 [8]		JSSC'20 [9]	ISSCC'23 [10]	This Work
Implementation	Synthesized ASIC	FPGA	FPGA	ASIC	ASIC	ASIC
Technology (nm)	90	-	-	40	28	28
Core Area (mm²)	11.4	-	-	4.2	0.81	0.75
FFT Window / Hop	512/-	512 / 256	400 / 100	256 / 128	512 / 256	256 / 64
Frequency (MHz)	500	-	-	5 - 20	2.5 - 20	18.5 – 25
On-Chip SRAM (kB)		313.7	434.67	327	35	75.5
Power (mW)	636 (1.2V, 500MHz)	272	147.2	2.17 (0.6V, 5MHz)	0.74 (0.8V, 2.5MHz); 1.365 (1V, 2.5MHZ) ^b	0.407ª (0.65V, 18.5MHz)
Frames/sec	-	63	160	125	63	125
Efficiency (µJ/frame)	10095.24°	4317.46	920	17.36	11.75	3.24ª
Dataset	TIMIT	CHiME2	CHiME2	CHiME2	CHiME2	CHiME2
PESQ	1.52	-	-	2.38 ^d	2.73	2.79

^aexcludes off-chip processing and STFT

^bML processing power from place-and-route netlist (excludes preprocessing: I/O Buffer, FFT, Window, Mel filter)

^cAs per [9], assuming hop size = 50% of FFT window size dfp32 implementation of [8] by [9]

Outline

- Introduction
- Design Features
 - Algorithm Design
 - Quantization Scheme
 - Top-level Chip Architecture
 - 1D Convolution Dataflow
- Results
- Conclusion

- Quantized convolutional encoder-decoder model tailored for wearable IoT devices and hearing aids
- Hardware quantization to reduce memory and computational demands

- Quantized convolutional encoder-decoder model tailored for wearable IoT devices and hearing aids
- Hardware quantization to reduce memory and computational demands
- Low power (407μW), or 3.24μJ per frame at 0.65V and 18.5 MHz
- High audio quality (PESQ: highest among prior works)
- Real-time processing: < 8ms per frame at 18.5 MHz

- Quantized convolutional encoder-decoder model tailored for wearable IoT devices and hearing aids
- Hardware quantization to reduce memory and computational demands
- Low power (407μW), or 3.24μJ per frame at 0.65V and 18.5 MHz
- High audio quality (PESQ: highest among prior works)
- Real-time processing: < 8ms per frame at 18.5 MHz
- Future Work:
 - Integration of frequency transform computation with on-chip processor
 - Development of a complete system (including ADC and DAC)

Acknowledgment

- We would like to thank MIT-IBM Watson AI Lab for funding.
- We would also like to thank the TSMC University Shuttle Program for tapeout support.
- We would also like to thank Zexi Ji for the communication interface code.

Thank you!