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* Wearable loT devices require
effective audio denoising

“AN YOi HEAR ME? * Clear communication during calls
* High-quality audio recordings
* Enhanced voice assistants
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* Audio denoising is a complex task
Involving audio reconstruction
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Audio Denoising is Hard for Wearable IoT Devices
Pr specral saction

i It B TR * Wearables require:
ik ] B * Superior audio quality

* Low power consumption

* Realtime performance

* Classical methods are rigid — noise estimation
* Fixed algorithms and parameters Q’))

* CNNs offer flexibility but demand efficiency
 Generalizable across noise types
* Finetune/retrain, downstream-deploy

https://ccrma.stanford.edu/~njb/teaching/sstutorial/
Park, Se Rim, and Jinwon Lee. arXiv preprint arXiv:1609.07132 (2016).
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Past ML-Based Audio Processing

* High'Performance:

@ »'Recent deep learning algorithms excel ~ * Convolutional Encoder-Dgcher
¥ in audio processing (CED) models show promise in

frequency-domain audio

* Challenges: gioEsele

{{é}\. High computational complexity N B B4 =y
by

* Large model sizes
* Substantial power and resource

requirements * Practicality depends on efficient
hardware design to reduce
* Feasibility Issues: computational demands

° |:| -» Unsuitable for loT devices due to
“Irl  energy and size constraints
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Our Solution: A Real-Time Low-Power Denoising System

Lower computational costs
with optimized quantization

Clean Audio

Denoised Audio Noisy Audio

Time (s)

Low on-chip
memory accesses, Processes audio in Ty b 52
highest aUdiO 8mS per frame, Tt (o) 36 42 48 0 06 1.2 1.8Tir2ri4e (535 36 42 48 4p

Noisy STFT Denoised STFT

guality score consumes 407uW
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End-to-end Audio Denoiser Pipeline

256 point

75% overlap CR-CED

Audio

denoised
audio

_ 129: Magnitude vectors from the 256-point STFT,
Audio 1D Time 2D Time - 129 points retained (symmetric-half of 256)
Ca_pt“red by series Frequency 8: Concatenate eight consecutive STFT vectors:
microphone series past five, current, and future two noise contexts
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Neural Network: Cascaded Redundant Convolutional Encoder-Decoder (CR-CED)

noisy audio
fr;lmes 0 \ denoised audio

skip
-5 2 -
(n-5) ng; ) connection

frame mask

conv2D

Output of a fused
Conv-BN-ReLU layer Final FC
Treated as CED post process

2D image (stacked four times) (off-chip)

_ Maskwvector: multiplied by
Single the noisy frame to obtain
2D conv the denoised audio STFT
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Weight: = sw Ex qu zm) z,=0
Input: i =is; ¥ €q;iz;)
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Offset: b = Sb 2 CCIb S Zb} Zy = 0
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Skip Connections, Per-kernel Adaptive Rounding

Skip connection computation:
03 = 01 + (1))

53(%,3 X Zs) % 51(%,1 = Z1) + Sz(CIo,z = Zz)

Qo3 = (Sskip,lqo,l + Sskip,zqo,z + Offsetskip) >> Shiftskip

Where,
: Si :
Sskip,i > Shlftskip N S_3' i=1,2
: S1 52
Offsetskip >> Shlftskip = Zaks (g) Z1 — (g) Zy

Per-kernel adaptive rounding: Determines how to round and at which precision
Adding a constant to offset, while eliminating the need for a comparator
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High Level Computation and Memory Blocks
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* Reconfigurable Chip Architecture:
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* Reconfigurable Chip Architecture:
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transfers to reduce latency and power.

Input SRAM
(4 kB)

Conv2D block
for 1D
conversion

o

(2) Toplevel Layer
Control @




* Reconfigurable Chip Architecture:

* Dynamic configuration for 2D/1D
imstruction Start_Ready convolution operations, tailored to input

and kernel requirements.

* On-Chip Data Loading:

Gam(f;‘ig)RAM L] _ * All weights an.d .qu.a.ntization parameters
preloaded, minimizing external data
S 05 kB). = transfers to reduce latency and power.
e e Optimized Precision and Power:
e * Activations stored in 8-bit precision.
1818 * Power-gated memory logic reduces power
oA @ during Inactivity.
for 1D

o

(2) Toplevel Layer
Control @




Instruction Start Ready

Layer Information - 32 bits

Weight SRAM
(36 kB)

Conv2D block
for 1D
conversion

l

Input SRAM
(4 kB) '
(1) Memory & Inst
Control

(2) Toplevel Layer
Control @

* Reconfigurable Chip Architecture:

* Dynamic configuration for 2D/1D
convolution operations, tailored to input
and kernel requirements.

On-Chip Data Loading:
* All weights and quantization parameters

preloaded, minimizing external data
transfers to reduce latency and power.

Optimized Precision and Power:
* Activations stored in 8-bit precision.

* Power-gated memory logic reduces power
during inactivity.

Efficient Data Processing:

* Conv2D blockreduces 2D to ¥D; 1D
convolver completes operatlons with residual
memory for skip connections.
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Architecture

Kernel Spad Control {} Kernel Spad
Main
control

Activation
memory
16 kB

CSA Tree weight MAC out output

reg unit reg mux

 Carry-Save Adder Tree

* Processes one kernel
at a time with PE

* Enables synchronous
computation of upto 9
channels
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PE Activation Routing Dataflow

0' 0' l' l'
G # # /
G / / %

EEEEEEEEE .
|8 |7 |6 |5 |4 |3 |2 |1 |0 4 < % <4
broadcast inputs to all PEs @

keep weights | | | | move partial sums
stationary to neighbouring PEs
O3 O O Oo

* Energy Optimization
via Memory Access
Reduction; PE input
routing and weight
mapping schemes

* Final PE computesa
complete kernel
convolution output
every cycle
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"4 Results

—A— 185MHz —@— 20MHz -l 25 MHz —A— fp32 impl. of JSSC '20 [9] by [10] —@— ISSCC '23[10] -~ This work

0.80 0.85

Voltage (V) SNR (dB)

Measured voltage scalability of this work PESQ comparison with prior works

* [9]- CNN based FPGA design
[10] - 1D depthwise-separable convolution layers, a gated recurrent unit based ASIC

[9]Y.C.Lee, T.S. Chi, C.H. Yang, IEEE JSSC, vol. 55, no. 8, pp. 275-282, Aug. 2020.
[10]S. Park, S. Lee, J. Park, H. S./Choi, D. Jeon, Proc. IEEE ISSCC, pp. 21-23,2023.
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ASIC

Tochmotogy I T

TCAS-1I’21[7] INTERSPEECH’20 [8] JSSC’20[9] | 1SSCC’23[10] | This Work
I I B R

-20

27

FFT Window / 512/- 512/256 400/100 256/128 5127256 256/ 64
On-Chip SRAM 313.7 434.67 3 75.5
(kB)

5
Power (mW) 636 272 2.17 74 0.4072
(1.2V, 500MHz) (0.6V, 5MHz) | (0.8V, 2.5MHz); (0.65V,
1.365 18.5MHz)
1V, 2.5MHZ)P

( )
(pn)/frame)
pesa_ | e | | [ e | e | 2m

aexcludes off-chip processing and STFT
bML processing power from place-and-route netlist (excludes preprocessing: /0 Buffer, FFT, Window, Mel filter)
°As per [9], assuming hop size = 50% of FFT window size 4p32 implementation of [8] by [9]

[71S. R. Chiluveru, et al., IEEE TCAS-II, vol. 68, no. 11, pp. 3461-3465, Nov. 2021.
[8] 1. Fedorov et al., INTERSPEECH, pp. 4054-4058, 2020.

[9]Y.C: Lee, T.S. Chi, C.H. Yang, IEEE JSSC, vol. 55, no. 8, pp. 275-282, Aug. 2020.
[10] S. Park, S. Lee, J. Park, H. S. Choi, D. Jeon, Proc. IEEE ISSCC, pp. 21-23, 2023.
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* Quantized convolutional encoder-decoder model tailored for
wearable loT devices and hearing aids

* Hardware quantization to reduce memory and computational
demands
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* Quantized convolutional encoder-decoder model tailored for
wearable loT devices and hearing aids

* Hardware quantization to reduce memory and computational
demands

* Low power (407uW), or 3.24uJ per frame at 0.65V and 18.5 MHz
* High audio quality (PESQ: highest among prior works)

* Real-time processing: < 8ms per frame at 18.5 MHz
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* Quantized convolutional encoder-decoder model tailored for
wearable loT devices and hearing aids

* Hardware quantization to reduce memory and computational
demands

* Low power (407uW), or 3.24uJ per frame at 0.65V and 18.5 MHz
* High audio quality (PESQ: highest among prior works)
* Real-time processing: < 8ms per frame at 18.5 MHz

* Future Work:
* Integration of frequency transform computation with on-chip processor
* Development of a complete system (including ADC and DAC)
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